Yurijnd.com
Пятница, 01.11.2024, 09:29
Меню сайта

Категории раздела
Мои статьи [152]

Вход на сайт

Поиск

Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz

  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0

    Главная » Статьи » Мои статьи

    Распознавание образов

    Направления и элементы в распознавании образов.

     

    Математические методы в распознавании образов используют в качестве базы для исследования совокупность признаков класса. Каждый признак класса имеет описание в виде значения. Решающее правило производит обработку совокупности значений признаков и выносит решение о принадлежности исследуемого объекта к определенному классу. Нет определения какие конкретно признаки нужно вносить в совокупность признаков класса, какие числовые значения должны иметь данные признаки, какое количество признаков должно иметься в совокупности признаков класса.  Решив данный вопрос, можно сделать простое решающее правило, когда при  совпадения всех, либо большинства признаков исследуемый объект относится к определенному классу.

     

             Математические кластерные методы используются также для определения совокупности признаков класса, для классификации объектов.

     

             Необходимо, чтобы алгоритм распознавания образов сам находил совокупность признаков класса и по данным признакам классифицировал объекты.

     

    Формирование признакового пространства пока что основано на опыте, интуиции, а то и везении. Теоретически обоснованные подходы к решению этой задачи в литературе не встречаются.

     

    Измерения, используемые для классификации образов, называются признаками. Признак – это некоторое количественное измерение объекта произвольной природы. Совокупность признаков, относящихся к одному образу, называется вектором признаков. Вектора признаков принимают значения в пространстве признаков. В рамках задачи распознавания считается, что каждому образу ставится в соответствие единственное значение вектора признаков и наоборот: каждому значению вектора признаков соответствует единственный образ. Классификатором или решающим правилом называется правило отнесения образа к одному из классов на основании его вектора признаков.

     

    Практическая разработка системы классификации осуществляется по следующей схеме

     

    В процессе разработки необходимо решить следующие вопросы.

     

    1. Как выбрать вектора признаков? Задача генерации признаков – это выбор тех признаков, которые с достаточной полнотой (в разумных пределах) описывают образ.

     

    Сенсор(измеритель)

     

    Генерация признаков

     

    Селекция признаков

     

    Построение классификатора

     

    Оценка системы

     

    2. Какие признаки наиболее существенны для разделения объектов разных классов? Задача селекции признаков – отбор наиболее информативных признаков для классификации.

     

    3. Как построить классификатор? Задача построения классификатора – выбор решающего правила, по которому на основании вектора признаков осуществляется отнесение объекта к тому или иному классу.

     

    4. Как оценить качество построенной системы классификации?

     

    Задача количественной оценки системы (выбранные признаки + классификатор) с точки зрения правильности или ошибочности классификации.

     

    Обратная задача распознавания

     

    Задача распознавания состоит в том, что для данного объекта по его известным признакам системой устанавливается его принадлежность к некоторому ранее неизвестному классу. В обратной задаче распознавания, наоборот, для данного класса распознавания системой устанавливается, какие признаки наиболее характерны для объектов данного класса, а какие нет (или какие объекты обучающей выборки относятся к данному классу).

    Категория: Мои статьи | Добавил: yurijnd (12.08.2015)
    Просмотров: 371 | Рейтинг: 0.0/0
    Всего комментариев: 0
    Имя *:
    Email *:
    Код *:
    Copyright MyCorp © 2024
    Сделать бесплатный сайт с uCoz